San-lider.ru

Эхолот не видит рыбу на дне

Основные принципы ловли хищной рыбы с эхолотом

Многие рыболовы, особенно начинающие, задаются вопросом – «зачем нужен эхолот?». Также вопросом о надобности таких приборов часто задаются рыболовы старой закалки, которые за много лет досконально изучили свои домашние водоемы. Для многих эхолот – это аппарат, который показывает глубину и наличие рыбы под лодкой. Действительно, так и есть. Но, к сожалению, в инструкции к эхолоту не пишут, как ловить рыбу с помощью этого прибора. Для тех, кто задумался о покупке такого помощника я расскажу об основных способах его использования в рамках поиска и ловли хищной рыбы.

Ловля «с рельефа»
Один из самых распространённых способов использования эхолота – искать неординарный рельеф дна. Это могут быть свалы, ямы, копанный рельеф, а также различные перепады глубин. Хищника привлекают такие места в первую очередь тем, что они позволяют сделать ему засаду. Также такие места часто создают «затишки» на течении, где держится кормовая рыба, которая привлекает хищника.

Самым простым вариантом ловли «с рельефа» можно считать ловлю с прибрежного свала. Он, как правило, есть на любом водоеме и является достаточно продолжительным. Для определения направления свала рекомендуется пройти над ним в нескольких местах. Далее необходимо сделать правильную постановку. Конкретного рецепта тут нет. Есть три варианта постановки (на глубину, на мель, на сам свал), а какой правильный может показать только практика. Проловив участок следует перемещаться дальше по свалу, т.к. отсутствие поклевок в одном конкретном месте не говорит о неправильности ваших действий.
Ловля с других вариантов рельефа производится по аналогичному алгоритму.

Ловля «из-под бели»
С помощью эхолота возможно отыскать косяки кормовой рыбы. Такие объекты, как правило, привлекают хищную рыбу. Часто именно «из-под бели» ловят самых крупных трофеев, которых называют «пастухами». Большие щуки, судаки, а бывает и окуни держаться около таких косяков и кормятся отбившимися особями. Тактика ловли «из-под бели» особенно актуальна осенью, когда кормовая рыба сбивается в большие стаи и смещаются на более глубокие участки водоема.

При поиске такой кормовой рыбы не нужно обращаться внимание на редко рассеянные значки рыб или точки на экране эхолота. В данном случае нас интересует более плотное расположение бели, которое в эхолоте может выглядеть как «сплошная стена». Расположение таких косяков также может быть различным: в верхнем слое воды, среднем или у дна. Какое именно расположение более удачно для рыболова сказать сложно, т.к. зависит от многих факторов, поэтому следует пролавливать все слои и находить тот, в котором в данный момент времени находиться хищник. Постановки при такой ловле следует делать по краям стаи, постепенно перемещаясь и пролавливая ее вокруг. Очень часто хищник около больших косяков кормовой рыбы клюет выходами, поэтому стоит такой ловле уделять больше времени.

Боковой обзор. Ловля «со структуры»
Появление приборов с функцией бокового обзора несомненно стало прорывом в развитии рыбопоисковой техники. Такие приборы называются «структурниками». Боковой обзор показывает то, что находится под вашей лодкой по сторонам на расстоянии 20-40 метров и более. Это позволяет находить на дне, так называемые, «структуры». Это могут быть одиночные камни или целые гряды камней, коряги, деревья, затопленные предметы и прочий донный хлам, к которому привязан хищник. Иногда с помощью такого прибора удается увидеть крупную рыбу, например, щуку или судака. «Структурник» позволяет ловить точечно, подбирая правильную постановку или приманку к отдельному предмету на дне. Также такие «глаза» под водой позволяют намного быстрее изучить водоем в сравнении с классическим эхолотом.

Дополнительные функции
Прогресс не стоит на месте. Современные эхолоты становятся многофункциональными устройствами, которые помимо своей основной функции – определение глубины и наличие рыбы, имеют ряд других помощников. Один из таких помощников – GPS. Ваша рыболовная жизнь значительно облегчится с наличием встроенного в эхолот GPS. «Забивать» рыбные точки и запоминать пройденные маршруты, определять скоростные характеристики и пользоваться картами – это неполный список возможностей эхолота со встроенным GPS-приемником. Стоит отметить, что возможность пользоваться картами есть не в каждом эхолоте с позиционированием. В более бюджетных моделях нет возможности подгружать карты, все ограничивается созданием точек и маршрутов. Если вы собираетесь пользоваться прибором на больших водоемах, то стоит обратить внимание на эхолоты с картплоттерами.

Почему эхолот видит рыбу?

Звуковые волны отражаются от физических неоднородностей, т.е. от поверхностей резкой смены скорости движения звука в среде.

Возникли вопросы?

по общим вопросам
и по вопросам работы
интернет-магазина:

по вопросам
оптовых закупок
и сотрудничества:

Дневник Компании:

2007-12-11
В продажу поступили ресиверы OpenBox X-820

2007-06-05
В продажу поступили новые цифровые спутниковые ресиверы GLOBO 7010 CR и GLOBO 7010 CI

2007-05-22
В продажу поступили ресиверы DRE-5000

2007-05-12
Представляем Вашему вниманию комплект оборудования для приема основных российских телевизионных каналов из пакета Триколор ТВ

2007-03-16
Доступные и функциональные GSM-сигнализации семейства “Эхо”

2006-12-26
Мы переезжаем в новый офис

2006-12-19
Представляем Вам новый ресивер от компании Samsung DSB-B270V

Интернет магазин>>

Почему эхолот видит рыбу?

Тело рыбы в основном состоит из воды, однако разница в скоростях движения звука в воде и в плавательном пузыре рыбы настолько велика, что практически весь импульс звука, попавший на рыбу, отражается в обратном направлении.

Плавательный пузырь нужен рыбе для удержания на конкретной глубине без необходимости непрерывной работы плавниками и хвостом. Плавательный пузырь – это то, что видно на экране эхолота. Форма рыбы и ее строение, разумеется, эхолот показать не может.

Подобно колоколу или столбу воздуха в трубе концертного органа, каждый плавательный пузырь рыбы имеет собственную частоту резонанса. Когда частота зондирующего импульса совпадет с собственной частотой плавательного пузыря, отраженный сигнал станет в несколько раз сильнее. Соответственно и объект в воде будет казаться значительно больше, чем он есть на самом деле. Корме того, частота резонанса плавательного пузыря зависит о давления воды, его размера и формы, а также от физиологического состояния рыбы. Все эти параметры меняются во время вертикального перемещения рыбы вместе со сменой давления воды.

Если рыба проплывет под днищем стоящего судна, то на экране эхолота появится рисунок в виде небольшой дуги (арки). Аналогичный результат будет в том случае, когда судно движется, а рыба – неподвижна. На самом деле, идеальную арку увидеть на экране почти невозможно, поскольку движется не только судно, но и рыба не стоит на месте, а движется, причем не обязательно проходит под днищем судна.

Итак, чем больше арка, тем больше рыба?
Нет, не всегда. Рыба того же самого размера, пересекающая центральную область конуса излучения вблизи поверхности воды, будет в этом конусе совсем непродолжительное время, а потому на экране появится в виде небольшой арки (дуги). Та же самая рыба около дна, проходящая через срединную часть конуса излучения, дольше будет видна в этом конусе, в результате чего будет изображена на экране эхолота большой аркой (дугой). В общем, это означает, что чем ближе рыба к судну, тем меньше она будет на экране, и тем больше будет, чем будет дальше от судна. Это совершенно обратное тому, как если бы мы наблюдали эту рыбу собственными глазами.

Но это самое общее описание. На самом деле, дуги на экране могут быть разного размера еще по тысяче иных причин: рыба всплывает или погружается, пересекает крайнюю область конуса излучения под острым углом к направлению на судно, судно движется быстрее или медленнее. Рыба вообще может находиться настолько близко ко дну, что попадет в «мертвую зону» и ее не будет видно.

Также можно увидеть, что косяк мелкой рыбешки, сбитый очень тесно, на экране будет изображен очень большой дугой (аркой), однако края такой арки будут значительно менее плотными, чем как если бы эта арка была отражением звука от одиночной, но большой, рыбы. Арки бывают очень разными, но любая из них образована реальной рыбой.

Есть одна общая ошибка пользования эхолотом, причем любым эхолотом, и ошибка эта – общая для всех пользователей: изображение на экране – это НЕ состояние водоема под днищем судна. Конус излучения под судном распространяется во все стороны от судна, однако на экране содержимое конуса излучения может быть показано только в одной плоскости. Подумайте об этом: это не сложно.

Основная проблема состоит в том, что все эхолоты отображают не истинной пространственное положение рыбы относительно судна, а проекцию изображения рыбы на вертикальную плоскость, проходящую через центральную ось конуса излучения. Это-то и создает иллюзию того, что все обнаруженные лучом подводные объекты располагаются под днищем судна.

На рисунке можно увидеть, что случится, если две рыбы будут обнаружены на одинаковом расстоянии от излучателя, хотя будут располагаться в различных секторах конуса излучения. Обе обнаруженные рыбы будут показаны в одном месте на экране, а потому будут видны как одна рыба.

Эти заметки составлены Ричардом Кристманом по прозвищу «Шкипер» и напечатаны в сборнике “Seeing Your Underwater World” («Увидеть подводный мир»).

Эхолот для рыбалки: мифы и действительность.

Мы все наслышались сказок и легенд о необыкновенных способностях эхолотов, о том, что они могут видеть, и чего – нет. Давайте теперь вместе постараемся “отделить зерна от плевел”. Это на самом деле не просто, даже если вы провели три десятка лет в беседах с технологами из большинства производящих эхолоты компаний.

Попытаюсь перевести на обычный разговорный язык то, что мне довелось услышать в таких разговорах. Вот некоторые “зерна правды”, которые я все же смог раздобыть за 30 прошедших лет.

Эхолот работает, посылая пучки звуковых импульсов в воду, которые в своем движении сквозь толщу воды встречают препятствие и отражаются от него как эхо. Процессор эхолота может вычислить, на каком расстоянии от излучателя находится встреченное волнами препятствие, измеряя время, затраченное звуковым импульсом на прохождение от излучателя до подводного объекта и обратно к излучателю, который является и приемником.

Но все-таки, если забыть мифы и легенды, от чего же на самом деле отражается и возвращается эхо? Все, что по плотности отличается от воды, может отразить звуковую волну и создать эхо-сигнал. Чем больше это различие плотностей, тем сильнее эхо. Для возникновения эха нет разницы в том, больше или меньше плотности воды собственная плотность объекта: важно лишь различие плотностей. Теоретически, стальной шарик и пузырек воздуха могут создать идентичные эхо-сигналы.

Рыбы создают одни из наиболее интересных и удивительных эхо-сигналов, какие только бывают. Вы наверняка слышали, что от плавательного пузыря в теле рыбы отражается эхо-сигнал, который в виде метки виден на экране эхолота. Это, правда, поскольку так и есть, но многие виды рыб не имеют плавательного пузыря, и, тем не менее, они также видны на экране эхолота!

Как и мы, рыбы в основном состоят из воды, так что от эха было бы мало пользы. Но на теле рыбы есть чешуя, скелет и другие части тела, плотность которых больше плотности воды. Хотя от плавательного пузыря звуковой импульс отражается, наверное, лучше всего, но другие части тела рыбы также вполне способны стать причиной эхо-сигнала.

РАЗМЕР ИМЕЕТ ЗНАЧЕНИЕ

Главный фактор, обеспечивающий точное определение размера рыбы эхолотом – правильно выбранная его чувствительность и установленный диапазон глубин. В общем случае, чем больше рыба, тем сильнее от нее эхо-сигнал и крупнее метка такого сигнала на экране.

Метка рыбы на экране, создаваемая более крупным существом, будет более крупной на любой глубине: уклейка создаст на экране метку размером в один пиксель в самом широком месте своей арки (скобки), тогда как полукилограммовый окунь создаст на экране метку шириной в 3-4 пикселя.

Длина арки на экране от одного ее конца до другого – не имеет к размеру рыбы никакого отношения, а всего лишь обозначает время нахождения рыбы в конусе излучаемого акустического сигнала.

Здесь очень важны настройки эхолота, потому что излишнее повышение чувствительности может полукилограммового окуня на экране представить трехкилограммовым сигом. С другой стороны, чрезмерное снижение чувствительности может привести к тому, что сиг на экране будет выглядеть как 300-граммовая плотвица. Переключение диапазона глубины с 0-30 футов на диапазон от 0 до 60 футов уменьшает метку рыбы на экране почти вдвое.

Итак, во-первых, нужно вручную установить диапазон просматриваемых глубин такой, чтобы видеть дно водоема около нижнего края экрана в самой глубокой точке, до которой планируется вести лов рыбы.

Затем, вращением регулятора поднять чувствительность до такой степени, чтобы по всему экрану стали случайным образом появляться и гаснуть точки, после чего уменьшить чувствительность настолько, чтобы эти случайные точки на экране просто перестали появляться. Следует отметить найденную настройку чувствительности (80%, 90% и т.п.), и стараться повторять ее во всех прочих случаях при такой же глубине водоема.

ТЕРМОКЛИН – ЗЕРКАЛО В ВОДЕ

Термоклины как магнит притягивают рыбу в определенное время года, и именно эхолот поможет нам там найти рыбу. Термоклин – это горизонтальный слой, в окрестности которого вода меняет температуру непропорционально изменению глубины. Положение термоклина показывает глубины, где верхние теплые слои воды в озере контактируют с подстилающими холодными слоями.

Холодная вода плотнее теплой, и этой разницы в плотностях зачастую достаточно для отражения падающего ультразвукового импульса. Погрузившиеся на дно мусор и прочий хлам, а также водоросли могут пересекать термоклины, повышая тем самым вероятность того, что дно под термоклиной можно будет увидеть на экране эхолота.

Годами я вглядывался в слабенькое эхо, отраженное от термоклина, пытаясь разглядеть дно под ним, и видел лишь горизонтальную полоску мерцающих пикселей.

Иногда на экране эхолота вся рыба видна на той же самой глубине, где должен была бы быть виден термоклин. По никому не известным причинам, – а это может быть особый уровень освещенности, концентрации ионов водорода, кислорода, или особая интенсивность космического излучения, – в некоторые дни эхолот может видеть водную толщу на невероятную глубину и, тогда никакие советы Вам не смогут помешать.

Самостоятельное устранение неисправностей в работе эхолота

Если Ваш эхолот-картплоттер работает неправильно, прочитайте эту статью, прежде чем обращаться в сервисный центр. Очень вероятно, что это поможет съэкономить Вам время и деньги на пересылку прибора. Возможно многие пункты из нижеприведенного списка покажутся Вам банальными, но опыт показывает, что последовательное их выполнение решает львиную долю проблем, возникающих при эксплуатации оборудования.

Прибор не включается

  1. Прежде всего проверьте, правильно ли кабель питания подсоединен к эхолоту.
  2. Затем убедитесь, что красная жила кабеля идет на положительную клемму батареи, а черная жила – на отрицательную.
  3. Убедитесь в исправности предохранителя, если он установлен в цепь питания.
  4. Проверьте напряжение на клеммах аккумуляторной батареи, должно быть 12В. При напряжении ниже 11В многие эхолоты перестают работать.

Развертка на экране заморожена, прибор работает нестабильно

  1. Скорее всего на работу прибора влияют электрические помехи. Их источников могут быть подвесной мотор, троллинговый электромотор, радар, рация и другие электроприборы. В этом случае рекомендуется проложить кабели питания и датчика подальше от других кабелей. Кабель питания стоит провести прямо к аккумуляторной батарее, а не через переключатель зажигания или предохранитель.
  2. Также стоит убедиться в целостности изоляции кабелей питания и датчика и убедиться в правильности их подключения.

Пониженный уровень сигналов от дна и от рыб

  1. Проверьте положение датчика. Излучающая поверхность должна быть ориентирована строго горизонтально. Протрите излучающую поверхность, возможно она загрязнена маслом или топливом.
  2. Если датчик расположен внутри корпуса, убедитесь, что между ним и водой находится только один слой пластика или металла. Проверьте, что датчик надежно приклеен к днищу, и что между ним и дном нет воздушных пузырей.
  3. Возможно, электрические помехи от двигателя приводят к тому, что эхолот усиливает фильтрацию шумов. В результате сигналы от рыб будут игнорироваться.
  4. Наконец, вы можете просто находиться на глубине, превышающей возможности вашего эхолота или датчика. В этом случае иногда помогает увеличение чувствительности.
  5. Проверьте напряжение аккумуляторной батареи. Если оно снижается, то уменьшается и мощность излучаемого импульса.

Сигнал исчезает на большой скорости

  1. Датчик попадает в завихрения воды или кавитационные пузыри, образующиеся при высокой скорости движения лодки. Необходимо подобрать положение датчика таким образом, чтобы он находился в ламинарном потоке. Опыт показывает, что правильно расположенные датчики работают на скоростях до 100 км/ч.
  2. Возможно, что на высокой скорости возникают помехи от двигателя, отрицательно влияющие на работу эхолота. Помимо рекомендации о прокладке кабелей датчика и питания подальше от других кабелей можно посоветовать использовать свечи зажигания с помехогасящим резистором.

Эхолот не показывает дуги рыб или показывает их не полностью

1. Убедитесь, что луч датчика направлен прямо вниз.

2. Попробуйте увеличить чувствительность, чтобы датчик принимал отраженный от рыбы сигнал когда она находится не только у оси конуса луча, но и по его краям.

3. Используйте функцию масштабирования.

4. Снизьте скорость движения лодки.

Электрические помехи

Электрические помехи проявляются как случайные пятна или точки на экране эхолота. В самых серьезных случаях они могут заполнять весь экран. Ниже приводятся рекомендации как устранить или уменьшить эффект от помех от электрооборудоания.

  1. Остановите лодку.
  2. Отключите эхолот и все электроприборы.
  3. Включите эхолот.
  4. Отключите на эхолоте функцию фильтрации помех. Должен появиться сигнал от дна.
  5. Включайте и отключайте по очереди все электроприборы и следите, когда появятся помехи на экране.
  6. Когда источник помех обнаружен, попробуйте переложить кабели питания и датчика эхолота подальше от кабелей источника помех.

Если электрооборудование не дает помех, то их источником может быть мотор вашего судна. Чтобы проверить это:

  1. Выключите все электрооборудование.
  2. Включите мотор и начинайте увеличивать обороты.
  3. Если на экране эхолоты появятся помехи, то скорее всего причина в генераторе тока, тахометре или в свечах зажигания.
  4. Используйте свечи с помехогасящим резистором, передвиньте кабели, подключите питание напрямую к батарее, используйте только предохранитель из комплекта поставки прибора.

И только после того, как все вышеперечисленные мероприятия не приведут к результату, стоит обращаться в сервисный центр. Спасибо, что прочитали до конца, желаем вам безотказной работы оборудования!

Читать еще:  Маркус рыба фото
Ссылка на основную публикацию
Adblock
detector